Models for estimating energy consumption and CO$_2$ emissions due to rolling resistance

Session 325: Road Infrastructure Reduction in CO2 emission by reducing pavement rolling resistance

Presentation at TRB 2012

Manfred Haider (AIT, Austria)
Ulf Hammarström (VTI, Sweden)
Stefan Deix (AIT, Austria)
Overview

1) Introduction and motivation

2) Modeling approaches

3) Simulation results
 a) AIT simulations
 b) VTI simulations

4) Conclusions and outlook
Introduction and motivation

• CO₂ emissions from road transport contribute to climate change

• Overall objective: Optimization of road infrastructure characteristics to reduce fuel consumption and greenhouse gas emission

• Rolling resistance due to tire-road interaction is a key parameter which can be influenced by pavement design and management

• MIRIAM topics:
 • Measurement models and simulation capabilities for rolling resistance
 • Integration of rolling resistance expertise into pavement management
Introduction and motivation

Activities in MIRIAM first phase:

• Investigation of the influence of pavement characteristics on energy efficiency
• Evaluation of existing expertise
• Evaluation of available modeling capabilities
• Identification and analysis of influencing parameters
Modeling approaches

Objective:

- Model energy efficiency and rolling resistance (RR) as a function of road surface characteristics
- First approach:
 - Characterize road surface by unevenness (IRI) and macrotexture (MPD)
 - Derive target RR function based mainly on IRI, MPD, speed
 - Integrate this function into a larger model (e.g. VETO)
- Second approach:
 - Use direct model of unevenness and texture
 - Use vehicle dynamic model to model the reaction of the vehicle
 - Integrate into larger model
VTI modeling approach

- Follows first approach for macrotexture (MPD) and unevenness (IRI), alternative approach concerning IRI possible
- Uses VETO model based on experience from IERD and ECRPD projects
- General rolling resistance model based on literature, coast-down measurements and drum measurements:
 \[Cr = Cr_0 + Cr_1 \cdot IRI \cdot v + Cr_2 \cdot MPD \]
- \(Cr_i \) parameters for Passenger cars, trucks and tires

Source: Hammarström, VTI
VTI modeling approach

Driving resistance influences torque and energy consumption

Figure 4.1 Engine map (g/kWh) for petrol engine. Engine specification: petrol, year model 1996-2003; PMrat=100 kW, displacement=1.95 dm³.

Source: Hammarström, VTI
VTI modelling approach

- Fuel consumption model on a link level - parameters
 - rolling resistance (based on IRI, MPD)
 - road curvature
 - road alignment
 - air resistance
 - speed
 - vehicle type: passenger car (PC), truck, truck with trailer
Simulation results - VTI

Influence of macrotexture (MPD) variation on fuel consumption for a PC at different speeds

Figure 6.4 Fcs as a function of the road surface condition (mpd) and speed for a car. Scl 1.

Source: Hammarström, VTI
Simulation results - VTI

Influence of macrotexture (MPD) variation on fuel consumption for a truck at different speeds

Figure 6.5 Fcs as a function of the road surface condition (mpd) and speed for a heavy truck. ScI 1.

Source: Hammarström, VTI
Simulation results - VTI

Influence of macrotexture (MPD) variation on fuel consumption for a truck and trailer at different speeds

Figure 6.6 Fcs as a function of the road surface condition (mpd) and speed for a truck+trailer. Scl 1.

Source: Hammarström, VTI
Simulation results VTI

At an average speed of 90 km/h (alignment standard scl 1) the simulated fuel consumption F_{cs} increases per unit increase of MPD by:

- car: 2.8 %
- heavy truck: 3.4 %
- truck+trailer: 5.3 %.

The importance of MPD increases with increasing vehicle weight. Road alignment and IRI influence speed, which can reduce the values given above.
Simulation results - VTI

Influence of unevenness (IRI) variation on fuel consumption for a PC at different speeds

Figure 6.7 Fcs as a function of the road surface condition (iri) and speed for a car Scl 1.
Source: Hammarström, VTI
Simulation results - VTI

Influence of unevenness (IRI) variation on fuel consumption for a truck at different speeds

Figure 6.8 Fcs as a function of the road surface condition (iri) and speed for a heavy truck. Source: Hammarström, VTI
Simulation results - VTI

Influence of unevenness (IRI) variation on fuel consumption for a truck and trailer at different speeds

Figure 6.9 Fcs as a function of the road surface condition (iri) and speed for a truck+trailer. Sc1 1.

Source: Hammarström, VTI
Simulation results VTI

At an average speed of 90 km/h (alignment standard scl 1) the simulated fuel consumption \(F_{cs} \) increases per unit increase of IRI by:

- car: 0.8 %
- heavy truck: 1.3 %
- truck+trailer: 1.7 %.

The importance of IRI increases with increasing vehicle weight.

Road alignment and IRI influence speed, which in turn can reduce the values given above.

Source: Hammarström, VTI
Simulation results VTI

- Fuel consumption functions showing the influence of road surface parameters were derived
- Road surface parameters were assumed to be constant along a link
- Further simplifications for integration into pavement management systems may be needed
- More different tyre models needed
- There is still a lack of useful data for validation of the models

Source: Hammarström, VTI
AIT modeling approach

Modeling strategy:
• Follows second approach
• 3D modeling of the road surface based on direct measurements of real road surfaces
• Simulation of interaction of the 3D road surface model with a tire model (FTire)
• Derivation of road surface influence on driving resistance
• Integration into a vehicle dynamics model (Dymola/Modelica)
AIT modelling approach

Road profile database interacts with tire model

- IRI,
- MPD,
- WLP,
- etc.

Measurement of RR

Image source: cosin scientific software
AIT modelling approach

Tire model -> Vehicle model -> Driving resistance -> Energy consumption

Driver Models

3D Road Graph

Probe Vehicle (validation)

FTire

Image source: Modelica
AIT modeling approach

Combined modeling of the influence of infrastructure parameters on energy efficiency:

- Curvature
- Crossfall
- Slope
- Longitudinal Profile
- Lateral Evenness
- Texture
Simulation results - AIT

- Simulation of tire/road interaction for 3D models of 24 real road surfaces
- Combined effects of all road surface effects
Simulation results - AIT

- Longitudinal resolution of 0.05 m
- Identification of very localized effects
- Analysis of unevenness wavelengths possible

![Simulation results graph](image-url)
Simulation results - AIT

- Estimation of effect on fuel consumption based on driving resistance effect
- Up to 3.5% predicted increase in fuel consumption
Conclusions and Outlook

- Two modeling approaches with different focus were developed, further integration needed
- Estimation of fuel consumption effects possible
- Many direct and indirect effects involved
- Road surface properties influence both rolling resistance and speed
- Road surface condition influence increases with increasing vehicle weight and with increasing road alignment standard
- Better connection to measurement methods needed
- Data basis needs to be widened and improved
Thank you for your attention!